Главная / Расписание открытых тренингов / Методы повышения точности прогнозов энергопотребления
Открытый тренинг
Методы повышения точности прогнозов энергопотребления
Выберите дату проведения:
О курсе: Специализированный
Тренинг для энергетиков, сбытовиков, специалистов по энергоэффективности. Формирование практических навыков прогнозирования использования энергоресурсов. Определение предела прогнозирования для имеющихся данных.

Возможность использования своих данных в процессе обучения.

Программа тренинга

ДЕНЬ 1. Азы прогнозирования и анализа, подготовка данных

ДЕНЬ 2. Прогнозирование энергопотребления без учета дополнительной информации о факторах

ДЕНЬ 3. Прогнозирование энергопотребления с учетом дополнительной информации о факторах

ДЕНЬ 4. Пути повышения точности прогнозов

ДЕНЬ 5. Отработка навыков прогнозирования на примерах слушателей. Анализ возможностей и целесообразности повышения точности прогнозов
1. Если от вашей компании планируется 3 и более человека, даты проведения могут быть скорректированы в соответствии с вашими потребностями, либо назначены дополнительные даты.
2. Формат проведения в указанные даты может быть быть изменен в соответствии с потребностями участников (очный - на онлайн и наоборот).
Продолжительность:
Off-line: 5 дней/ 40 академических часов
On-line: 5 дней/ 40 академических часов
Требования к слушателям:
Высшее образование
Опыт работы в Excel на уровне пользователя
Вы получите:
Набор бесплатных надстроек и шаблонов Excel, необходимых для прогнозирования
Пошаговые инструкции по применению каждого метода
Сертификат на 4-месячную бесплатную консультационную поддержку
Стоимость участия
От компании
один человек (от компании)
57 000 руб.
два и более человека (от компании)
55 000 руб.
Физическое лицо
55 000 руб.
* Все скидки действуют только при предоплате.
** Стоимость участия может изменяться в зависимости от даты и места проведения.
Программа
ДЕНЬ 1. Азы прогнозирования и анализа, подготовка данных

ИНСТРУМЕНТЫ, МЕТОДИКИ, АЛГОРИТМЫ КЕЙСЫ
 
  • Основные принципы построения прогноза энергопотребления: технология «Пять шагов»
  • Классификация методов, которые можно использовать для построения прогнозов энергопотребления
  • Три способа систематизации факторов, влияющих на энергопотребление:
    • диаграмма Исикавы
    • таблица факторных влияний
    • причинно-следственная диаграмма
  • Подготовка исходных данных. Работа с пропущенными данными
  • Анализ динамики энергопотребления:
    • определение грубых выбросов
    • чистка данных
    • выявление сезонности
  • Различия в анализе часовых, суточных и месячных данных
  • Основные статистические показатели и графики, используемые при прогнозировании:
    • среднее значение, медиана, стандартное отклонение, стандартная ошибка, размах
    • гистограмма, диаграмма последовательности, диаграмма рассеяния
  • Доверительный интервал прогноза
  • Точность модели и точность прогнозов
  • Показатели точности прогнозной модели и прогнозов: MAPE, MAD и другие
  • Подходы к выбору адекватного показателя оценки точности модели и прогноза
  • Пример. Строим диаграмму Исикавы с целью классификации факторов, влияющих на электропотребление, и заполняем таблицу факторных влияний.
  • Пример в Excel. Изучаем динамику потребления электроэнергии. Учимся анализировать колебания в потреблении и формировать правильные ожидания.
  • Пример в Excel. Проводим графический анализ динамики потребления. Самостоятельно учимся определять наличие, сезонности, структурных сдвигов и выбросов.

ДЕНЬ 2. Прогнозирование энергопотребления без учета дополнительной информации о факторах

ИНСТРУМЕНТЫ, МЕТОДИКИ, АЛГОРИТМЫ КЕЙСЫ
 
  • Прогнозирование на основе метода сезонной декомпозиции:
    • требования к периодичности данных
    • пошаговый алгоритм прогнозирования в Excel
    • влияние выбросов и структурных сдвигов на точность прогнозов
    • плюсы и минусы подхода
  • Правила оценки качества прогнозной модели. Анализ остатков
  • Правила графического анализа остатков модели:
    • график автокорреляции
    • гистограмма
    • диаграмма рассеяния
  • Прогнозирование на основе метода экспоненциального сглаживания:
    • идея метода, четыре параметра сглаживания
    • пошаговый алгоритм в Excel
    • влияние горизонта прогноза на точность прогнозов
    • влияние выбросов и структурных сдвигов на точность прогнозов
    • плюсы и минусы подхода
  • Особенности прогнозирования на основе экспоненциального сглаживания для суточных и часовых данных
  • Критерии выбора между экспоненциальным сглаживанием и сезонной декомпозицией
  • Пример в Excel. Проводим сезонную декомпозицию потребления электроэнергии и строим прогноз на несколько месяцев. Оцениваем качество построенной модели.
  • Пример в Excel. Строим прогноз на несколько месяцев с помощью экспоненциального сглаживания. Оцениваем качество модели и прогноза.
  • Пример в Excel. На основе истории энергопотребления строим прогноз на 3 месяца двумя способами (на основе сезонной декомпозиции и методом экспоненциального сглаживания). Оцениваем качество моделей и выбираем наиболее адекватный подход.
  • Пример в Excel. На основе экспоненциального сглаживания прогнозируем электропотребление на 2 дня вперед по часам.

ДЕНЬ 3. Прогнозирование энергопотребления с учетом дополнительной информации о факторах

ИНСТРУМЕНТЫ, МЕТОДИКИ, АЛГОРИТМЫ КЕЙСЫ
 
  • Многофакторный регрессионный анализ: идея и требования к исходным данным
  • Пошаговый алгоритм прогнозирования на основе регрессионного анализа в Excel
  • Диагностика и решение проблемы взаимозависимых факторов (мультиколлинеарность)
  • Правила оценки качества модели:
    • анализ остатков
    • ANOVA
    • R-квадрат и скорректированный R-квадрат
  • План действий при «плохих» остатках модели
  • Интерпретация коэффициентов регрессионного уравнения:
    • как влияют факторы на энергопотребление
    • ранжирование факторов по силе влияния
  • Особенности прогнозирования при недостатке информации о факторах. Техника фиктивных (dummy) переменных
  • Учет в регрессии сезонности разного типа
  • Разработка сценариев потребления на основе регрессионного анализа
  • Пессимистический и оптимистический прогноз: варианты построения
  • Плюсы и минусы прогнозирования на основе регрессионного анализа
  • Правила перехода от регрессии к авторегрессии
  • Авторегрессионные модели для прогнозирования: идея и реализация
  • Плюсы и минусы прогнозирования на основе авторегрессионного анализа
  • Пример в Excel. Изучаем влияние макроэкономических факторов на потребление электроэнергии для прогнозирования по месяцам.
  • Пример в Excel. Анализируем влияние погодных условий (температуры и влажности воздуха, атмосферного давления, скорости ветра, осадков и т.п.) на потребление.
  • Пример в Excel. Учитываем график включения / отключения оборудования на предприятии, длины светового дня и температуры воздуха на электропотребление этого предприятия. Делаем прогноз на 2 суток вперед.
  • Пример в Excel. Прогнозируем потребление с использованием фиктивных переменных.
  • Пример в Excel. Проводим сравнительный анализ прогнозов потребления на основе регрессии и авторегрессии.
  • Пример в Excel. Строим прогноз энергопотребления группы потребителей всеми изученными способами и выбираем наиболее адекватный подход (самостоятельно).

ДЕНЬ 4. Пути повышения точности прогнозов

ИНСТРУМЕНТЫ, МЕТОДИКИ, АЛГОРИТМЫ КЕЙСЫ
 
  • Способы учета нелинейного влияния факторов на энергопотребление
  • Анализ влияния выходных и праздничных дней на энергопотребление
  • Учет запаздывающего влияния факторов при прогнозировании
  • Особенности и ограничения при прогнозировании часового потребления
  • Два способа расчета часовых индексов
  • Правила проведения ручной корректировки прогнозов
  • Классификация потенциальных причин ошибки прогноза
  • Структура ошибки прогноза
  • Пути улучшения модели в случае неудовлетворительных прогнозов. Методика анализа ошибок прогноза за период
  • Примеры в Excel. Разбираем типичные ситуации нелинейного влияния температуры воздуха на энергопотребление и учимся учитывать их при прогнозировании.
  • Пример в Excel. Выясняем, влияет ли «вчерашний» объем производства промышленного предприятия на «сегодняшнее» энергопотребление. Учимся интерпретировать выявленные задержки во влиянии.
  • Пример в Excel. Учитываем влияние выходных и праздничных дней при прогнозировании.
  • Примеры в Excel. Отрабатываем методику анализа ошибок прогноза за период с целью улучшения построенной модели.

ДЕНЬ 5. Отработка навыков прогнозирования на примерах слушателей. Анализ возможностей и целесообразности повышения точности 

ИНСТРУМЕНТЫ, МЕТОДИКИ, АЛГОРИТМЫ КЕЙСЫ
 
  • Повторение ключевых идей курса:
    • алгоритм выбора подходящего метода прогнозирования энергопотребления в зависимости от количества имеющихся данных и их формата (часовые, суточные и т.п.), наличия информации о факторах, горизонта прогноза
  • Разбор типовых ошибок при прогнозировании энергопотребления
  • Работа с данными слушателей. Строим прогнозные модели энергопотребления на основе данных слушателей. Оцениваем качество моделей и точность прогнозов на ее основе. Разрабатываем рекомендации по дальнейшему улучшению построенных моделей.

После окончания обучения вы сможете
Определять наилучший метод прогнозирования для потребления энергоресурсов: электричества, газа, угля и т.п.
Быстро прогнозировать
Прогнозировать суточное энергопотребление предприятия на основе производственных факторов и показателей развития региона
Повышать точность прогнозов
Прогнозировать в случае, если имеются данные только энергопотребления, и нет дополнительной информации о факторах, влияющих на него
Прогнозировать суточное энергопотребление с учетом дополнительной информации о разных факторах (температуры воздуха, продолжительности светового дня, наличия осадков, графика включения / выключения оборудования потребителя и т.п.)
Прогнозировать часовое энергопотребление на последующие дни
Заявка на участие
С помощью этой формы вы сможете подать заявку на участие в тренинге
Ваше ФИО*
Как с вами связаться?
Дата тренинга*
Комментарий
Задайте вопрос
Напишите нам и мы подробно ответим на все Ваши вопросы!
Ваше ФИО*
Куда ответить*
Ваш вопрос